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Summary

A wind tunnel test was conducted on a two-
dimensional model of the NACA 0012 airfoil section
with either a conventional solid upper surface or a porous
upper surface with a cavity beneath for passive venting.
The purposes of the test were to investigate the aero-
dynamic characteristics of an airfoil with full-chord
porosity and to assess the ability of porosity to provide a
multipoint or self-adaptive design. The tests were con-
ducted in the Langley 8-Foot Transonic Pressure Tunnel
over a Mach number range from 0.50 to 0.82 at chord
Reynolds numbers of 2× 106, 4 × 106, and 6× 106. The
angle of attack was varied from−1° to 6° in 1° incre-
ments. The porous surface nominally extended over the
entire upper surface. The porosity was zero at the leading
and the trailing edges and was distributed by using a
square-root-sine function with a maximum value of
2.44 percent at the model midchord. The average poros-
ity (ratio of total hole area to total porous surface area) of
the upper surface was 1.08 percent.

In general, full-chord porosity reduces the lift curve
slope and increases the drag at a given section normal
force coefficient. At lower Mach numbers, porosity leads
to a dependence of the drag on the normal force. At sub-
critical conditions, porosity tends to flatten the pressure
distribution, which reduces the suction peak near the
leading edge and increases the suction over the middle of
the chord. At supercritical conditions, the compression
region on the porous upper surface is spread over a
longer portion of the chord. In all cases, the pressure
coefficient in the cavity beneath the porous surface is
fairly constant with a very small increase over the rear
portion. For the porous upper surface, the trailing edge
pressure coefficients exhibit a creep at the lower section
normal force coefficients, which suggests that the bound-
ary layer on the rear of the airfoil is significantly thicken-
ing with increasing normal force coefficient. Porous
airfoils exhibit an adaptive characteristic in that the
thickness and the leading edge radius of an equivalent
solid airfoil decrease with increasing Mach number, thus
making the porous NACA 0012 airfoil perform more like
a high-speed airfoil.

Introduction

 For supercritical flow over a solid surface airfoil,
the supersonic zone may be terminated by a strong nor-
mal shock. In addition to causing wave drag, the pressure
rise across the shock may lead to boundary layer separa-
tion, which further increases the total drag. Narrow
porous surface strips with cavities beneath the surface of
transonic airfoils have been proposed to delay the drag
rise that is associated with the energy losses due to
shocks and shock-induced boundary layer separation

(refs. 1 to 6). The principle underlying this passive drag
reduction technique, often referred to as shock venting, is
presented in figure 1(a).

By placing a porous strip on the surface over a cavity
beneath the foot of the shock, a secondary flow is
induced into and out of the cavity. The velocities through
the surface and the velocities in the cavity are relatively
small by design. Since the velocity of the flow in the cav-
ity is small, the pressure gradient in the cavity is also
small. The pressure level in the cavity can be considered
nearly constant with a value between the minimum and
the maximum pressures on the porous surface. The pres-
sure rise associated with the shock above the porous sur-
face creates a chordwise pressure gradient. Aft of the
shock, the pressure on the porous surface is greater than
the pressure in the cavity, so the secondary flow goes
into the cavity. The secondary flow travels upstream in
the cavity and exits through the porous surface upstream
of the shock, where the pressure on the porous surface is
less than that in the cavity. This secondary flow proceeds
downstream over the porous surface. The resulting bub-
ble of recirculating flow acts like a bump on the airfoil
surface, which leads to an oblique compression wave
(which can be isentropic) that forms the upstream edge of
a lambda shock. To be effective, the porous strip must be
located beneath the shock for the operating Mach number
and lift coefficient.

Flow visualization studies (refs. 1 and 2) show that a
porous strip placed beneath a shock does lead to a weaker
lambda shock system. Data from exploratory experi-
ments (refs. 1 to 3) indicate that, at supercritical condi-
tions with a strong shock, a narrow porous strip reduces
the drag, may increase the lift, and increases the buffet
boundary. At subcritical conditions, the porous strip
increases the drag (ref. 1).

 Computational studies of solutions to the full poten-
tial flow, the Euler, and even the Navier-Stokes equa-
tions have simulated the flow over an airfoil with a
porous strip (refs. 4 to 7). Calculated results agree with
the experimental data in that a porous strip can increase
the lift and reduce the wave drag. The results also show
the formation of the lambda shock system over the
porous strip. Calculations with viscous effects show that
a porous strip can suppress transonic shock-induced
oscillations causing buffet (ref. 7). When the addition of
a porous strip leads to more negative pressure coeffi-
cients on surfaces with downstream-directed, outward
normal vectors, the calculated pressure drag will
increase. Viscous calculations indicate that porosity can
lead to a separated flow region downstream of the porous
strip and to an increase in the viscous drag. Increases in
the pressure and the viscous drag offset to some degree
the reduction of the wave drag. As a result, the net drag
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increases when there is either a weak shock or no shock
and the net drag decreases when there is a strong shock.

A pressure gradient along the length of a porous sur-
face creates a secondary flow field that acts like a bump
or a local increase in thickness. By locating a porous strip
on the forward portion of the airfoil, the increase in local
thickness can increase the effective leading edge radius
and can improve the performance of the airfoil at high
incidence angles, which produces a self-adaptive airfoil
(ref. 8). Results from an Euler study (ref. 9) show that
porosity that covers almost the entire chord (fig. 1(b)) not
only delays the drag divergence, but also produces sur-
face pressure distributions, which suggest that full-chord
porosity might provide a means for achieving multipoint
design for transonic airfoils.

The purpose of this report is to present experimental
surface static pressure and wake total pressure distribu-
tions so that the effect of full-chord porosity on airfoil
aerodynamic characteristics is better understood. The
results are also used to determine whether the delay in
drag divergence and the multipoint design capability pre-
dicted in the Euler study reported in reference 9 can be
achieved. The experimental study presented herein was
conducted in the Langley 8-Foot Transonic Pressure
Tunnel (ref. 10) with a two-dimensional model that
incorporated the NACA 0012 airfoil section.

Two upper surfaces were tested: one with full-chord
porosity and the other with no porosity (solid surface).
The lower surface of the model was solid. Measurements
were obtained over a Mach number range from 0.50
to 0.82, an angle-of-attack range from−1° to 6°, and
chord Reynolds numbers of 2× 106, 4× 106, and 6× 106.
Chordwise static pressure distributions were measured
on the upper and the lower exterior surfaces of the airfoil
and along the bottom of the cavity. Total pressure distri-
butions were measured across the airfoil wake. These
pressure data, as well as the integrated force and moment
coefficients, are used to study the effect of porosity on
the airfoil aerodynamic characteristics. Equivalent solid
airfoils were defined by an inverse design method and
the porous upper surface pressure distributions to assess
any multipoint design characteristics in the porous airfoil
results.

Symbols

The results are presented in coefficient form with the
moment reference center at the quarter-chord. All experi-
mental measurements and calculations were made in
U.S. customary units.

b model span, 83.9 in.

Cp pressure coefficient

Cp,te pressure coefficient near the trailing edge
(x/c = 0.99)

Cp
* pressure coefficient at local sonic conditions

c model chord, 25.00 in.

cd section drag coefficient

cm section pitching moment coefficient resolved
about the quarter-chord

cn section normal force coefficient

M∞ free-stream Mach number

pt local total pressure in wake, psi

pt,∞ free-stream total pressure, psi

Rc Reynolds number based on model chord and
free-stream conditions

rle airfoil leading edge radius, in.

tmax airfoil maximum thickness, in.

x chordwise distance from the leading edge,
positive downstream, in.

y normal distance from the chord line or rake
tube location, positive up, in.

z spanwise distance, positive out the right
wing, in.

α angle of attack, positive leading edge up, deg

∆y measured normal distance− design normal
distance from the chord line, in.

η nondimensional spanwise location,

σ surface permeability parameter

Subscript:

max maximum value

Wind Tunnel

The investigation was conducted in the Langley
8-Foot Transonic Pressure Tunnel (8-ft TPT). Informa-
tion about the wind tunnel may be found in reference 10.
The tunnel is a single-return, fan-driven, continuous-
operation pressure tunnel. The top and the bottom walls
are slotted and the sidewalls are solid. The test section is
160 in. long with an 85.5-in-square cross section at the
beginning of the slots. The cross-sectional area of the test
section is equivalent to the cross-sectional area of an 8-ft-
diameter circle. A photograph of an airfoil model
installed in the test section is presented in figure 2(a).
The empty test section Mach number is continuously
variable from about 0.20 to 1.30. Stagnation pressure can
be varied from 0.25 atm to 2.00 atm. Air dryers are used
to control the dew point. A heat exchanger located
upstream of the settling chamber controls the stagnation
temperature. Five turbulence reduction screens are

z
b/2
--------



3

located just downstream of the heat exchanger. An
arc-sector model support system with an angle range
from −12.5° to 12.5° is located in the high-speed dif-
fuser. For this test, a wake rake was installed on the
model support system. The whole arc sector was trans-
lated longitudinally to position the wake rake at the
desired test section station.

Model

An unswept, two-dimensional airfoil model was
used for this investigation. Photographs of the model are
presented in figure 2 and sketches are presented in
figure 3. The model spanned the width of the tunnel at a
vertical station 1.4 in. above the tunnel centerline. The
model chord was 25.00 in., which yields an aspect ratio
of 3.36 and a ratio of tunnel height to model chord
of 3.42. The angle of attack was set manually by rotating
the model about pivots in the angle-of-attack
plates mounted on the tunnel sidewalls. (See figs. 2(a)
and 3(a).) Fixed pivot settings provided an angle-of-
attack range from−1.00° to 6.00° in increments of 0.25°;
however, only 1° increments were used.

The model was fabricated in two parts: a main spar
and an interchangeable center insert. (See figs. 3(a)
and 3(b).) The upper and the lower surfaces of the outer
portions of the main spar were solid and followed the
contour of the NACA 0012 airfoil section. The center
portion of the main spar was also solid and the lower sur-
face followed the contour of the NACA 0012 airfoil. The
interchangeable insert, installed over the center portion
of the main spar, defined the leading and the trailing
edges of the lower surface, as well as the entire upper
surface of the center portion of the wing. (See fig. 3(b).)
The upper surface of the interchangeable insert was
porous and the lower surface was solid. The model shape
was measured at three spanwise stations and the devia-
tion of the measured airfoil shape from the desired shape
is presented in figure 4. The solid lower surface was very
close to the desired contour, with the maximum deviation
less than 0.0002c. The porous upper surface, with a max-
imum deviation of 0.0009c, did not follow the desired
contour as closely as the lower surface.

The interchangeable center insert was machined with
46 chordwise cavities, each 0.94 in. wide and spaced at
1.00 in. intervals. (See figs. 3(b) and 3(c).) The remain-
ing 0.06 in. between the cavities formed ribs to support
the porous surface. The maximum cavity depth of
0.75 in. was maintained from near the nose to the 0.5c
location. The depth decreased linearly from that location
to zero at the trailing edge.

The porous surface was a perforated titanium sheet,
0.020 in. thick. (See figs. 2(b) and 3(c).) The porous
sheet had 368 chordwise rows with 440 holes in each

row. The holes were laser drilled with a diameter of
0.010± .001 in. The porous sheet was bonded to the ribs
with epoxy resin. Near the trailing edge, where the cavity
was shallow, the perforated plate was bonded to the solid
lower surface, which eliminated the porosity there. The
chordwise rows were spaced 0.125 in. apart so that there
were 8 rows over each cavity. The chordwise distribution
of the porosity is defined by

(1)

This distribution and the valueσmax= 0.6 were
selected to be consistent with the Euler study of ref-
erence 9. This distribution was implemented by varying
the spacing of the holes along the length of the chord.
Determination of the chordwise spacing of the holes is
presented in the appendix. The average porosity (ratio of
total hole area to total porous surface area) was 1.08 per-
cent and the peak porosity was 2.44 percent.

A single chordwise row of pressure orifices was
installed on the upper surface and the lower surface near
the model centerline. Two spanwise rows of pressure ori-
fices were installed on the upper surface and the lower
surface. A single chordwise row was installed on the bot-
tom of the cavity just to the right of the model centerline.
A sketch of the locations of the pressure orifices is pre-
sented in figure 3(a) and a listing is presented in table 1.
The orifices were installed normal to the local surface
and had a diameter of 0.020 in. For the chordwise row,
the upper surface orifices were located on the centerline
(except for the two orifices atx/c = 0 andx/c = 0.0029).
The lower surface orifices were located 1.5 in. to the
right of the centerline. There were 49 orifices on the
upper surface that extended from the leading edge back
to 0.99c and 47 orifices on the lower surface that
extended from 0.0068c back to  0.99c. The orifices were
concentrated near the leading edge. In the cavity, the ori-
fices were located along the center of the cavity bottom,
0.5 in. from the model centerline. (See fig. 3(c).) There
were 13 cavity orifices that extended from 0.033c to
0.923c and spaced at approximately 0.07c intervals. The
two spanwise rows on each surface were located at 0.80c
and 0.90c.

Wake Rake

A wake rake was mounted vertically on the model
support system to survey the total and the static pressure
distributions in the model wake on the tunnel centerline.
The rake was pitched on the model support system to
align the maximum total pressure loss with the rake
centerline. Except where noted otherwise, the wake rake
streamwise location was fixed at 37.50 in. downstream of
the model trailing edge. A sketch of the wake rake is pre-
sented in figure 5 and a photograph is presented in

σ σmax π x/c( )sin=
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figure 6. The rake tube locations are listed in table 2. The
wake rake had 61 total pressure tubes located between
17.685 in. above and 17.685 in. below the rake center-
line. The inside of each total pressure tube was flattened
into an oval shape 0.02 in. high and 0.07 in. wide. The
tubes were concentrated near the center of the rake where
the total pressure gradient was expected to be the largest.
In addition, there were 7 static pressure probes installed
between 10.015 in. above and 10.015 in. below the rake
centerline in a vertical plane 0.50 in. from the plane of
the rake total pressure tubes.

Instrumentation

The test section total and static pressures were mea-
sured with quartz Bourdon tube differential pressure
transducers referenced to a vacuum. Each transducer had
a range from±30 psid and a quoted accuracy from the
manufacturer of±0.003 psid. The test section stagnation
temperature was measured with a thermocouple mounted
in the settling chamber. The wing static pressures and the
wake rake static and total pressures were measured with
an electronically scanned pressure measurement system
with a transducer dedicated to each orifice. Each trans-
ducer had a range of±5 psid and a quoted accuracy from
the manufacturer of±0.005 psid. The model angle of
attack was determined by a pinhole selected to fix the
model attitude on the angle-of-attack plates.

Tests and Procedures

The model angle of attack was set manually. The
angles used for this test ranged from−1° to 6° in 1°
increments. At each angle of attack, the free-stream
Mach number was varied from 0.50 to 0.82 at Reynolds
numbers of 2× 106, 4 × 106, and 6× 106 based on a
model chord of 25.00 in. The nominal test conditions are
presented in table 3. All tests were conducted at a stagna-
tion temperature of 100°F. At each test condition, the
model support system (and consequently the wake rake)
angle was adjusted so that the location of the maximum
loss in total pressure coincided with the center tube of the
wake rake. This ensured that the portion of the wake with
the largest total pressure gradient was measured by that
portion of the rake with the closest total pressure tube
spacing. Normally, the total pressure tubes on the wake
rake were positioned 1.5c (37.5 in.) downstream of the
model trailing edge at an angle of attack of 0°. A limited
number of measurements were obtained with the wake
rake positioned 1.0c (25.0 in.) downstream of the model.
A comparison of the results obtained with the wake rake
at these two locations, presented in figure 7, shows no
significant effects from the wake rake location on the
integrated force and moment coefficients.

Boundary layer transition was fixed for all tests with
a 0.1-in.-wide strip of number 80 carborundum grit on
both the upper and the lower surfaces. The strip on each
surface began 1.25 in. back (x/c = 0.05) from the leading
edge. The grit size was determined by using the tech-
nique described in reference 11.

The section normal force and pitching moment coef-
ficients were obtained by numerically integrating (with
the trapezoidal method) the local pressure coefficient at
each orifice multiplied by an area weighting function.
(The area weighting function is determined by the loca-
tion of the surface pressure orifices.) The section drag
coefficient was obtained by numerically integrating (with
the trapezoidal method) the point drag coefficient calcu-
lated at each rake total pressure tube by using the proce-
dure of Baals and Mourhess (ref. 12).

No corrections were applied to the model angle of
attack or to the free-stream Mach number for the effects
of top and bottom wall interference or to the Mach num-
ber for sidewall interference. Corrections to the porous
airfoil results should be similar to the corrections to the
solid airfoil results at similar test conditions. Therefore,
comparisons of porous and solid airfoil results at similar
test conditions should provide reasonable values for the
effects of porosity.

A single porous insert with 0.75-in-deep cavities was
tested. The solid surface results were obtained from the
model with the porous insert covered with an impervious
tape. The tape, which was 0.002 in. thick, covered the
exterior of the model from the location of the transition
strip on the lower surface, extending around the leading
edge, and continuing back to the upper surface trailing
edge. By using the same upper surface shape for both the
solid and the porous surface tests, the effect of changes in
the shape between the solid and the porous surface tests
should be minimized.

Data Quality

As noted previously, the upper surface shape devi-
ated slightly from the design shape. To evaluate the
effect of the difference, the results from the current test
are compared in figure 8 with results obtained previously
on an NACA 0012 airfoil section in the 8-ft TPT
(ref. 13). For the tests reported in reference 13, the
Reynolds number was smaller and the grit size (number
54 carborundum grit) used to fix transition was larger
than that used in the current test.

The comparison shows good agreement at a Mach
number of 0.50 except for the angle of zero normal force
coefficient and some small scatter in the drag data for the
current test. These results suggest a model misalignment
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of −0.10° in the current test that could be due to flow
angularity and/or the actual model attitude atα = 0°. The
difference between the section normal force coefficients
is larger at a Mach number of 0.70, but the drag coeffi-
cients are in good agreement at normal force coefficients
below the break in the drag polar. At a Mach number of
0.80, there is a sizable difference of 0.0020 in the drag
coefficients at zero normal force.

Although there are differences between the results
from the current test and those from the test reported in
reference 13 because of the difference in the transition
grit, Reynolds number, and surface shape, the current test
is consistent (i.e., same transition grit, Reynolds number,
and surface shape were used for the solid and the porous
surface tests).

The porous upper surface extended from a non-
dimensional spanwise location,η = z/(b/2), of aboutη =
−0.6 toη = 0.6. Since the flow over the central porous
surface will be different from that over the outer solid
surface, the spanwise extent of two-dimensional flow
will be smaller for the porous surface than for the solid
surface. The spanwise rows of pressure orifices were
used to assess the extent of the two-dimensional flow.

The spanwise pressure distributions atx/c = 0.8 on the
upper surface are presented in figure 9 at the lowest, an
intermediate, and the highest test Mach numbers for both
the solid and the porous upper surfaces. For the solid sur-
face, there is no significant spanwise variation in the
pressure coefficient at these three Mach numbers. For the
porous surface, there is no significant spanwise variation
at the lowest Mach number. At the intermediate and the
highest Mach numbers, spanwise gradients develop at
stations outboard ofη = 0.12 andη = −0.34, which indi-
cates the presence of three-dimensional flow for those
test conditions. However, there is still a region with little
spanwise pressure gradient around the model centerline
so that there is a region of two-dimensional flow about
the model centerline from the lowest to the highest test
Mach numbers. Thus, the flow at the model centerline
can be assumed to be two-dimensional for the conditions
encountered in this test.

The model with the porous upper surface was
retested at an angle of attack of 0° during the test and the
results are presented in figure 10. Although there are
only a limited number of repeat points, the data repeat-
ability is excellent.

Presentation of Results

The results from this investigation are presented with transition fixed on both surfaces atx/c = 0.05. The moment
reference center was 0.25c. The results are presented in the following figures:

Figure

Chordwise pressure coefficient distributions for solid and porous surfaces at:

Constant angle of attack ....................................................................................................................................11 to 19

cn ≈ 0.3 ....................................................................................................................................................................... 20

Effect of porosity on pressure coefficient near trailing edge ............................................................................................ 21

Effect of porosity on total pressure profiles at constant angle of attack ........................................................................... 22

Effect of Mach number on integrated force and moment coefficients.............................................................................. 23

Effect of Reynolds number on integrated force and moment coefficients:

Solid upper surface..................................................................................................................................................... 24

Porous upper surface .................................................................................................................................................. 25

Effect of porosity on integrated force and moment coefficients ....................................................................................... 26

Variation of section drag coefficient with Mach number.................................................................................................. 27

Equivalent upper surface shape obtained from solid upper surfaceCp distributions........................................................ 28

Equivalent upper surface shape obtained from porous upper surfaceCp distributions ........................................ 29 and 30
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Discussion of Results

Airfoil Surface Pressure Distributions

Comparisons of the chordwise pressure coefficient
distributions for the solid and the porous airfoils at the
same angle of attack are presented in figures 11 to 19 for
Mach numbers from 0.50 to 0.82 at a chord Reynolds
number of 4× 106 over the angle-of-attack range. It
should be noted that, although the comparisons are pre-
sented at the same angle of attack, the section normal
force and the drag coefficients are different. Thus, there
may be small differences in the wall interference for the
two points compared in each plot. For those cases with
supersonic flow, the pressure coefficient for sonic flow is
noted on the plot byCp

* . No data were obtained for the
solid upper surface airfoil model at an angle of attack of
−1°. Assuming that the model is symmetric and that the
tunnel upwash can be neglected, results from the lower
surface of the solid airfoil at an angle of attack of 1° can
be compared to the results from the upper surface of the
porous airfoil at−1°. Therefore, results from the model
with the solid surface at an angle of attack of 1° are plot-
ted with the results from the porous surface at an angle of
attack of−1°.

The pressure coefficient along the length of the cav-
ity is, in general, fairly constant with a small positive
gradient toward the rear part of the cavity for some cases.
The constant pressure level indicates that the flow in the
cavity is small, which validates the assumption of con-
stant cavity pressure used in reference 9. The pressure
coefficient in the cavity is about the same as the pressure
coefficient on the upper surface just aft of the midchord
location.

If the addition of porosity to the upper surface does
not significantly change the pressure coefficient at the
trailing edge, the flow along the lower surface should not
be changed by the addition of porosity. This is indeed the
case as shown by the measured chordwise pressure distri-
butions. The lower surface pressure distribution is the
same with and without upper surface porosity when there
is no change in the trailing edge pressure coefficient.
(Seeα = 2° in fig. 14.) However, if the addition of poros-
ity reduces the pressure coefficient at the trailing edge,
the change will be felt upstream on the lower surface
since the pressure reduction will hinder the flow from
approaching stagnation conditions at the trailing edge.
The pressure coefficients on the lower surface are indeed
reduced when porosity reduces the trailing edge pressure
coefficient, which is an indication of a significantly
thickened upper surface boundary layer and possible sep-
aration. (Seeα = 4° in fig. 14.)

For the solid airfoil at subcritical conditions, the
flow accelerates over the forward portion of the upper

surface, which creates a leading edge suction peak at
higher angles of attack. Aft of the initial acceleration, the
pressure coefficient increases. Over the forward portion
of the porous airfoil, where the surface static pressure
coefficient is less than the cavity pressure, flow will be
drawn out of the cavity. Over the rear portion of the
porous airfoil, where the surface pressure coefficient is
greater, flow will be drawn into the cavity. This second-
ary flow through the porous surface tends to flatten (or
reduce the gradient in) the upper surface chordwise pres-
sure distribution over the midchord region. The leading
edge suction peak (when present) is reduced, the suction
over the forward portion of the airfoil is reduced, and the
suction over the central portion of the airfoil is increased
(e.g., compare pressure distributions with and without
porosity forα = 5° in fig. 12).

For the solid airfoil at supercritical conditions, the
accelerated flow region on the upper surface is termi-
nated by a shock. For the porous airfoil, flow is drawn
out of the cavity on the forward portion of the upper sur-
face and forced into the cavity on the aft portion. The
flow induced through the porous surface spreads the
compression region over a longer portion of the chord,
which replaces the sharp compression associated with a
shock on the solid upper surface (e.g., see pressure distri-
butions forα = 0° in fig. 18). The compression on the
porous upper surface becomes steeper, suggesting the
formation of a weak shock, as the angle of attack (and
section normal force coefficient) increases (e.g., compare
pressure gradients nearx/c = 0.20 forα = 2° andα = 4°
in fig. 18). However, this steepening is reduced when
compared with that experienced by the shock on the solid
surface airfoil, which results in a reduction of the wave
drag portion of the total drag.

The effects of porosity on the chordwise surface
pressure distributions at a nominal section normal force
coefficient of 0.3 are presented in figure 20. For the sub-
critical case, the results are presented at the same angle
of attack. Porosity reduces the leading edge suction peak
on the upper surface, reduces the suction over the front of
the upper surface, and increases the suction over the mid-
dle of the upper surface, which results in a redistribution
of the pressure loading on the forward portion of the air-
foil. There is only a little change in the lower surface
pressure distributions. For the supercritical cases, the
angle of attack for the model with the porous upper sur-
face must be increased to match the section normal force
coefficient. As the Mach number increases, the accelera-
tion over the forward portion of the porous upper surface
increases, sometimes exceeding the suction pressure
coefficients for the solid upper surface. The compression
region on the porous upper surface is spread over a
longer portion of the chord. The compression does
become steeper as the Mach number increases. For these
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cases, the trailing edge pressure does not recover to the
same level found for the solid upper surface. The lower
surface pressure coefficient distributions over the for-
ward portion of the chord differ because of the difference
in the angles of attack and the change in the trailing edge
pressure coefficient due to porosity.

As previously indicated, porosity affects the growth
of the upper surface boundary layer, and consequently,
affects the pressure coefficient near the trailing edge.
A comparison of the pressure coefficients near the upper
surface trailing edge (x/c = 0.99) is presented in
figure 21. For the Mach numbers presented, the trailing
edge pressure coefficient for the solid upper surface is
relatively constant until trailing edge separation begins.
With separation, the trailing edge pressure coefficient
becomes less positive (more negative). For the porous
upper surface, the trailing edge pressure coefficients
exhibit a creep at the lower section normal force coeffi-
cients suggesting that the boundary layer on the rear por-
tion of the airfoil is significantly thickening with
increasing normal force coefficient. The trailing edge
pressure coefficient for the porous surface also exhibits a
rapid decrease at the higher normal force coefficients.

Wake Pressure Distributions

The shape of the total pressure profile in the airfoil
wake can be used to assess the viscous and the wave drag
contributions to the total drag. Comparisons of the wake
total pressure ratio distributions for three angles of attack
are presented in figure 22 for selected Mach numbers
from 0.50 to 0.80 at a chord Reynolds number of 4× 106.
The profile below the peak total pressure loss is nearly
the same for the solid and the porous surfaces. This pro-
file is consistent with the similar lower surface chordwise
pressure distributions found for the solid and the porous
surfaces. At subcritical conditions, the peak total pres-
sure loss and the thickness of the wake are larger for the
porous surface. This difference indicates greater losses
for the porous upper surface, probably due to increased
viscous losses (increased skin friction) and losses associ-
ated with decelerating the flow into the cavity and accel-
erating the flow out of the cavity. Measurements at a
Reynolds number of about 3× 106 on a smooth solid and
a smooth porous cylinder indicate that the skin friction
for the porous wall is about 30 percent larger than that
for the smooth wall (ref. 14). Thus, porosity significantly
increases the viscous contribution to the total drag. At
supercritical conditions, the wake profiles for the solid
surface show an additional triangular region of total pres-
sure loss from the upper surface associated with the wave
drag due to the presence of shocks. Most of the wake
profiles for the porous surface do not show the additional
triangular region (e.g., seeα = 2° in fig. 22(d)). Exami-
nation of the associated chordwise pressure distributions

(α = 2° in fig. 16) show a shock on the solid upper sur-
face, but no shock on the porous upper surface. The
chordwise pressure distributions and wake profiles asso-
ciated with the porous surface for more extreme cases
(higher angles of attack and Mach numbers) show that
porosity does not always eliminate the shock or wave
drag. (Seeα = 4° in figs. 18 and 22(e).) Porosity reduces
the contribution of wave drag to the total drag.

Integrated Force and Moment Coefficients

Effect of Mach number.The effect of Mach number
on the integrated force and moment coefficients for the
airfoil with the solid upper surface and the porous upper
surface is presented in figure 23. Results for the model
with the solid upper surface (fig. 23(a)) follow the
expected trends. For the lower Mach numbers, the drag
coefficient is independent of the section normal force
coefficient over the linear portion of the normal force
curves. At transonic Mach numbers, increasing shock
strength and wave drag with increasing normal force
coefficient leads to increasing drag. The positive slope of
the pitching moment coefficient curve indicates that the
aerodynamic center is slightly forward of the moment
reference center (0.25c). The slope of the section normal
force curves increases with increasing Mach number. As
the Mach number increases, the normal force curve
becomes nonlinear at progressively smaller angles of
attack.

Results for the model with the porous upper surface
(fig. 23(b)) do not follow all of the same trends. As was
found for the solid surface, at subcritical conditions, the
normal force curve slope at zero normal force increases
with increasing Mach number. Unlike the results for the
solid surface, at the lower Mach numbers the drag coeffi-
cient for the porous surface increases with increasing
normal force coefficient and increasing Mach number,
which is a direct result of losses through the porous sur-
face. At supercritical conditions, the normal force coeffi-
cient at an angle of attack of 0° becomes more negative
with increasing Mach number.

Effect of Reynolds number.The effect of Reynolds
number on the integrated force and moment coefficients
for the model with the solid upper surface is presented in
figure 24 and for the model with the porous upper surface
in figure 25. The effect of Reynolds number on the
porous surface is similar to that for the solid surface.
Increasing the Reynolds number generally reduces the
turbulent skin friction, and therefore, reduces the drag
coefficient at a given normal force coefficient. It has lit-
tle effect on the linear portion of the normal force or on
the pitching moment curves.
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Effect of porosity.The effect of porosity on the inte-
grated force and moment coefficients is presented in fig-
ure 26. In general, upper surface porosity reduces the
normal force curve slope and increases the drag at a
given section normal force coefficient. The loss in nor-
mal force at a given angle of attack arises from the reduc-
tion in the pressure over the forward portion of the airfoil
discussed previously. The increased drag arises from the
increased viscous drag noted in the wake pressure distri-
butions. At the lower Mach numbers, porosity leads to a
dependence of the drag on the normal force. As the angle
of attack and the normal force increase, the difference
between the cavity pressure and the airfoil surface pres-
sure increases and the flow through the porous surface
increases. The chordwise component of this flow must be
decelerated to zero and turned as the flow enters the cav-
ity and accelerated and turned as the flow exits the cav-
ity. The force required to decelerate and accelerate the
flow increases the drag. Since the flow increases with
normal force, the drag also increases with normal force.
At supercritical conditions, the normal force curves for
the airfoil with the porous upper surface develop a sec-
ond, nearly linear segment (e.g., seeα > 3° in fig. 26(e)).
The start of this second segment appears to correlate with
the formation of the localized steeper pressure gradient
associated with the presence of a weak shock and wave
drag noted in the discussion of the pressure distributions.

The effect of porosity on the variation of the section
drag coefficient with the free-stream Mach number at
two section normal force coefficients is presented in fig-
ure 27. For this study, drag divergence is defined as the
point on the drag coefficient versus Mach number curve
wheredcd/dM∞ = 0.1. The solid surface exhibits a small
amount of drag creep at subcritical Mach numbers with a
dramatic increase at the transonic Mach numbers. The
porous surface exhibits a higher level of drag, a higher
drag creep, and a reduced drag divergence Mach number.
For example atcn = 0 andM∞  = 0.5, the drag coefficient
on the solid surface was 0.0085 and the drag coefficient
on the porous surface was 0.0121. The Mach number
associated with drag divergence decreased from
about 0.78 for the solid surface to about 0.77 for the
porous surface. Similarly atcn = 0.3 andM∞  = 0.5, the
drag coefficient on the solid surface was 0.0086 and the
drag coefficient on the porous surface was 0.0156. The
Mach number associated with drag divergence decreased
from about 0.74 for the solid surface to about 0.70 for the
porous surface. For these conditions, the increased vis-
cous losses, pressure drag, and momentum losses associ-
ated with the secondary flow into and out of the cavity
arising from the porous surface are larger than the wave
drag reduction from the porous surface.

Effective Airfoil Shape

The pressure distribution obtained from the airfoil
with the porous upper surface could also be obtained
from an equivalent solid airfoil with a different upper
surface shape. The measured porous airfoil upper surface
pressure distribution was used as input to the Direct Iter-
ative Surface Curvature (DISC) method described in ref-
erence 15 coupled to the Euler solver described in
reference 16 to obtain the new solid surface. Viscous
effects were modeled with the boundary layer displace-
ment thickness by using a modified theory of Stratford
and Beavers (ref. 17). This particular combination of a
design algorithm and a flow solver was experimentally
verified in reference 18.

The airfoil design program should calculate the
actual upper surface shape from the measured solid upper
surface pressure distribution. A comparison of the base-
line NACA 0012 airfoil upper surface shape with the re-
sulting equivalent solid upper surface shape is presented
in figure 28. The equivalent solid shapes are in good
agreement with each other and with the NACA 0012
upper surface shape, thus validating the design process.

Next, the design program was used to generate
equivalent solid upper surface shapes that correspond to
the measured pressure distributions from the porous
upper surface. Equivalent upper surface shapes with a
closed trailing edge could not be generated for test condi-
tions in which the upper surface trailing edge pressure
coefficients indicated significant separation. These sepa-
rated flows were beyond the capability of the flow solver
with the attached-boundary-layer model.

A comparison of the equivalent solid upper surface
shapes generated from the porous upper surface pressure
distributions at constant angles of attack is presented in
figure 29 for several Mach numbers. At the lowest Mach
number, the addition of porosity atα = 0° leads to an air-
foil that is thicker than the NACA 0012 airfoil section
across the midchord region but has a reduced leading
edge radius. The maximum airfoil thickness and the lead-
ing edge radius decrease as the Mach number increases at
both of the angles of attack presented. The equivalent
upper surface shape falls below that of the NACA 0012
over the forward portion of the chord at the higher Mach
numbers. Porosity leads to a desirable self-adaptive fea-
ture of decreasing effective thickness with increasing
Mach number. A comparison of the equivalent solid
upper surface shapes generated from the porous upper
surface pressure distributions at constant Mach numbers
is presented in figure 30 for several angles of attack. At
both Mach numbers presented, the maximum thickness
and the leading edge radius decrease as the angle of
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attack increases. Thus, porosity bestows a self-adaptive
quality to the airfoil, albeit at a penalty of increased drag
due to the venting losses.

Conclusions

A wind tunnel investigation was conducted on a two-
dimensional airfoil model of an NACA 0012 airfoil sec-
tion with a conventional solid upper surface and a porous
upper surface. The purpose of the investigation was to
study the effects of porosity on aerodynamic characteris-
tics and to assess the ability of porosity to provide a
multipoint or self-adaptive design. The tests were con-
ducted in the Langley 8-Foot Transonic Pressure Tunnel
over a Mach number range from 0.50 to 0.82 at chord
Reynolds numbers of 2× 106, 4 × 106, and 6× 106. The
angle of attack was varied from−1° to 6°. The porous
surface nominally extended over the entire upper surface.
When compared to the solid surface airfoil, the conclu-
sions from this investigation are

1. At subcritical conditions, porosity tends to flatten
the pressure distribution, which reduces the suction peak
near the leading edge and increases the suction over the
middle portion of the chord.

2. At supercritical conditions, the compression
region on the porous upper surface is spread over a
longer portion of the chord.

3. At supercritical conditions, for the porous upper
surface, the trailing edge pressure coefficients exhibit a
creep at the lower section normal force coefficients,
which suggests that the boundary layer on the rear por-
tion of the airfoil is significantly thickening with increas-
ing normal force coefficient.

4. The pressure coefficient in the cavity is fairly
constant with a very small increase over the rear portion,
which indicates that the flow in the cavity is small.

5. Porosity reduces the lift curve slope and increases
the drag at a given section normal force coefficient.

6. At the lower Mach numbers, porosity leads to a
dependence of the drag on the normal force and the Mach
number.

7. Porous airfoils exhibit an adaptive characteristic
in that the thickness and the leading edge radius of an
equivalent solid airfoil decrease with increasing Mach
number, albeit at a penalty of increased drag.

NASA Langley Research Center
Hampton, VA 23681-0001
February 2, 1996
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Appendix A

Determination of Chordwise Spacing of Holes
on Porous Surface

Symbols

b width of porous patch

D hole diameter

l length of porous patch

mass flow rate

N number of holes through porous patch

R unit Reynolds number based on free-stream
conditions

equivalent normal transpiration velocity

average velocity through hole in porous
surface

V∞ free-stream velocity

∆p pressure difference across porous surface

µ∞ free-stream viscosity

ρ∞ free-stream density

ρ local density

σ permeability parameter

σmax maximum value of permeability parameter

τ thickness of porous surface

Determination of Spacing

The porous upper surface of the model was drilled
with 368 chordwise rows of holes.   The effect of the dis-
crete regions of flow into and out of the cavity through
this surface is modeled by an equivalent normal transpi-
ration velocity. Darcy’s law is used to relate the equiva-
lent normal transpiration velocity to the pressure
difference across the porous surface:

(A1)

The flow through an individual hole can be esti-
mated with the Hagen-Poiseuille solution for fully devel-
oped, viscous flow through a circular pipe:

(A2)

If a porous patch of lengthl, width b, andN holes is
selected, the mass flow through theN individual holes
must equal the mass flow from the equivalent transpira-
tion velocity over the patch of area . Assuming that
the selected porous patch is small enough that the pres-
sure difference can be assumed constant, the equivalence
of the mass flow rates through the surface for the two
representations can be expressed as

(A3)

Upon substituting the expressions for  from equa-
tion (A1) and the expression for  from equation (A2)
into equation (A3), an expression is obtained that relates
the geometric characteristics of the porous surface to the
permeability:

(A4)

Substituting for the unit Reynolds number produces

(A5)

For this study, the porous surface parameters were
τ = 0.020 in. andD = 0.010 in. The design was done at a
unit Reynolds numberR of 2 × 106/ft. A modified sine
distribution was chosen for the surface permeability
distribution:

(A6)

For this study,σmax = 0.6.   The modified sine distri-
bution and the value ofσmax were selected to be consis-
tent with the computational study in reference 9.

The chordwise spacing of the holes can be deter-
mined by selecting a section of the porous surface that
contains one hole (N = 1). Since there are 8 longitudinal
rows per inch, the width of the sectionb would be
0.125 in. The length of the sectionl would be the
unknown chordwise spacing. Solving equation (A5) forl
and substituting the value of the surface permeabilityσ
from equation (A6) for the desired chordwise location
will yield the chordwise spacing at the selected chord-
wise location:

(A7)

ṁ

νn

ν

vn
σ

ρ∞V∞
--------------- ∆p⋅=

v
D

2

32µ∞
--------------∆p

τ
-------=

l b⋅

ṁ ρv
πD

2

4
----------N ρvnlb= =

νn
ν

πD
4

128µ∞
-----------------N

τ
---- σ

ρ∞V∞
--------------- lb=

πD
4
R

128
--------------N

τ
---- σlb=

σ σmax πx c⁄( )sin=

l
NπD

4
R

128τbσ
-------------------=
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Table 1.  Pressure Orifice Locations

(a) Chordwise rows

Upper surfacex/c Lower surfacex/c Cavityx/c

    0.0001     0.3503     0.7200     0.3500     0.7200 0.033

    0.0029     0.3802     0.7401     0.3799     0.7400 0.105

    0.0062     0.4102     0.7601     0.0068     0.4099     0.7599 0.176

    0.0133     0.4352     0.7801     0.0136     0.4349     0.7799 0.246

    0.0212     0.4601     0.8001     0.0216     0.4600     0.8000 0.315

    0.0305     0.4801     0.8200     0.0306     0.4800     0.8200 0.384

    0.0404     0.5002     0.8400     0.0398     0.5000     0.8401 0.452

    0.0604     0.5202     0.8600     0.0599     0.5199     0.8601 0.520

    0.0804     0.5400     0.8800     0.0799     0.5399     0.8795 0.587

    0.1004     0.5602     0.8998     0.1000     0.5600     0.9007 0.654

    0.1252     0.5802     0.9201     0.1249     0.5801     0.9209 0.721

    0.1504     0.6001     0.9399     0.1500     0.6000     0.9408 0.789

    0.1803     0.6201     0.9598     0.1799     0.6200     0.9609 0.856

    0.2153     0.6401     0.9746     0.2150     0.6400     0.9759 0.923

    0.2502     0.6601     0.9899     0.2500     0.6600     0.9908

    0.2853     0.6801     0.2850     0.6800

    0.3202     0.6999     0.3200     0.7000

(b) Spanwise rows

Upper surfaceη at— Lower surfaceη at—

x/c= 0.8 x/c= 0.9 x/c= 0.8 x/c= 0.9

−0.468 −0.456 −0.456 −0.456

−0.350 −0.340 −0.340 −0.340

−0.234 −0.222 −0.222 −0.222

−0.116 −0.106 −0.106 −0.106

 0.116  0.106  0.106  0.106

 0.234  0.222  0.222  0.222

 0.350  0.340  0.340  0.340

 0.468  0.456  0.456  0.456
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Table 2.  Wake Rake Pressure Tube Locations

(a) Total pressure tubes (b) Static pressure tubes

z, in. z, in.

17.685   2.295   0.540 −0.540 −2.295  10.015

15.885   2.475   0.450 −0.630 −2.475   4.015

14.085   1.935   0.360 −0.720 −2.655   1.665

12.285   1.755   0.270 −0.810 −3.285   0.000

10.485   1.575   0.180 −0.900 −4.365 −1.665

8.685   1.395   0.090 −1.035 −5.445 −4.015

6.885   1.215   0.000 −1.215 −6.885 −10.015

5.445   1.035 −0.090 −1.395 −8.685

4.365   0.900 −0.180 −1.575 −10.485

3.285   0.810 −0.270 −1.755 −12.285

2.655   0.720 −0.360 −1.935 −14.085

2.475   0.630 −0.450 −2.115 −15.885

−17.685

Table 3.  Nominal Test Conditions

M∞

Rc

2 × 106 4 × 106 6 × 106

0.50 X X X

0.60 X X X

0.65 X X X

0.70 X X X

0.74 X X

0.76 X X

0.78 X X

0.80 X X

0.82 X X
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(a)  Narrow porous strip for shock venting.

(b)  Full chord porous upper surface.

Figure 1.  Airfoil with porous surface in transonic flow.
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L-93-00490
(a)  Model installation.

Figure 2.  Photographs of model in 8-ft TPT.
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L-93-00491
(b)  Close-up of porous surface.

Figure 2.  Concluded.

Flow
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(a)  Top view of model.

(b)  Cross section of model.

Figure 3.  Details of model. All dimensions are in inches.
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(c)  Cross section of cavities.

Figure 3.  Concluded.
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Figure 4.  Deviation of model shape from design NACA 0012 shape.
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Figure 5.  Details of wake rake. All dimensions in inches.
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L-93-00493
Figure 6.  Photograph of wake rake in 8-ft TPT.
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(a) Rc = 4× 106.

Figure 7.  Effect of rake position on integrated force and moment coefficients of baseline porous airfoil.α = 0°.
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(b) Rc = 6× 106.

Figure 7.  Concluded.
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(a) M∞ = 0.50.

Figure 8.  Comparison of integrated force and moment coefficients with previous test results for solid surface.
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(b) M∞ = 0.70.

Figure 8.  Continued.

Current 
Ref. 13 

4  
3  

-1 0 1 2 3 4 5 6 

α, deg

cn

.005 .010 .015 .020 .025 .030 .035 .040 .045 

cd

Test 

.02

cm Rc × 10-60

-.02

.7

.6

.5

4

.3

.2

.1

0

-.1



26

(c) M∞ = 0.80.

Figure 8.  Concluded.
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Figure 9.  Spanwise surface pressure coefficient distributions for upper surface.x/c = 0.8;Rc = 4× 106.
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Figure 10.  Repeatability of integrated force and moment coefficients of porous airfoil.α = 0°; Rc = 6× 106.
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Figure 11.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface.M∞ = 0.50;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 11.  Concluded.
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Figure 12.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface. M∞ = 0.60;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 12.  Concluded.
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Figure 13.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface.M∞ = 0.65;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 13.  Concluded.
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Figure 14.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface.M∞ = 0.70;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 14.  Concluded.
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Figure 15.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface.M∞ = 0.74;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 15.  Concluded.
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Figure 16.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface.M∞ = 0.76;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 16.  Concluded.
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Figure 17.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface.M∞ = 0.78;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 17.  Concluded.
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Figure 18.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface.M∞ = 0.80;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 18.  Concluded.
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Figure 19.  Chordwise surface and cavity pressure coefficient distributions on NACA 0012 with solid and porous upper surface.M∞ = 0.82;
Rc = 4× 106. Open symbol denotes upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 19.  Concluded.
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Figure 20.  Effect of porosity on chordwise surface pressure coefficient distributions.cn ≈ 0.3;Rc = 4× 106. Open symbol denotes
upper surface, ‘+’ in symbol denotes lower surface, and solid symbol denotes cavity.
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Figure 21.  Effect of porosity on upper surface pressure coefficient near trailing edge.Rc = 4 × 106. Open symbol
denotes solid upper surface and ‘+’ in symbol denotes porous upper surface.

-.2 -.1 0 .1 .2 .3 .4 .5 .6 

cn

Cp,te

0

0

0

0

0

M∞

0.50 

0.60 

0.70 

0.74 

0.78 

0.80 

.2

0

-.2

-.4



49

(a) M∞ = 0.50.

Figure 22.  Effect of porosity on total pressure profiles in airfoil wake.Rc = 4× 106.
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(b) M∞ = 0.60.

Figure 22.  Continued.
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(c) M∞ = 0.70.

Figure 22.  Continued.
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(d) M∞ = 0.76.

Figure 22.  Continued.
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(e) M∞ = 0.80.

Figure 22.  Concluded.
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(a)  Solid surface.

Figure 23.  Effect of Mach number on integrated force and moment coefficients.Rc = 4× 106.
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(b)  Porous surface.

Figure 23.  Concluded.
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(a) M∞ = 0.50.

Figure 24.  Effect of Reynolds number on integrated force and moment coefficients for solid upper surface.
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(b) M∞ = 0.60.

Figure 24.  Continued.
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(c) M∞ = 0.65.

Figure 24.  Continued.
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(d) M∞ = 0.70.

Figure 24.  Continued.
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(e) M∞ = 0.74.

Figure 24.  Continued.
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(f) M∞ = 0.76.

Figure 24.  Continued.
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(g) M∞ = 0.78.

Figure 24.  Continued.
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(h) M∞ = 0.80.

Figure 24.  Continued.
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(i) M∞ = 0.82.

Figure 24.  Concluded.
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(a) M∞ = 0.50.

Figure 25.  Effect of Reynolds number on integrated force and moment coefficients for porous upper surface.
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(b) M∞ = 0.60.

Figure 25.  Continued.
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(c) M∞ = 0.65.

Figure 25.  Continued.
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(d) M∞ = 0.70.

Figure 25.  Continued.
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(e) M∞ = 0.74.

Figure 25.  Continued.
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(f) M∞ = 0.76.

Figure 25.  Continued.
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(g) M∞ = 0.78.

Figure 25.  Continued.
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(h) M∞ = 0.80.

Figure 25.  Continued.
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(i) M∞ = 0.82.

Figure 25.  Concluded.
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(a) M∞ = 0.50.

Figure 26.  Effect of porosity on integrated force and moment coefficients.Rc = 4× 106.

Surface 

Solid 
Porous 

-1 0 1 2 3 4 5 6 

α, deg

cn

.005 .010 .015 .020 .025 .030 .035 .040 .045 

cd

.02

cm 0

-.02

.7

.6

.5

4

.3

.2

.1

0

-.1



75

(b) M∞ = 0.60.

Figure 26.  Continued.
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(c) M∞ = 0.65.

Figure 26.  Continued.
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(d) M∞ = 0.70.

Figure 26.  Continued.
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(e) M∞ = 0.74.

Figure 26.  Continued.
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(f) M∞ = 0.76.

Figure 26.  Continued.
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(g) M∞ = 0.78.

Figure 26.  Continued.
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(h) M∞ = 0.80.

Figure 26.  Continued.
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(i) M∞ = 0.82.

Figure 26.  Concluded.
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Figure 27.  Variation of section drag coefficient with free-stream Mach number.Rc = 4× 106.
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Figure 28.  Comparison of baseline NACA 0012 upper surface shape and equivalent solid upper surface shapes obtained from solid surfaceCp
distributions.
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(a) α = 0°.

Figure 29.  Comparison of baseline NACA 0012 upper surface shape and equivalent solid upper surface airfoils obtained from porous surface
Cp distributions at constantα's.
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(b) α = 2°.

Figure 29.  Concluded.
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(a) M∞ = 0.50.

Figure 30.  Comparison of baseline NACA 0012 upper surface shape and equivalent solid upper surface shapes obtained from porous surface
Cp distributions at constantM∞’s.
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(b) M∞ = 0.76.

Figure 32.  Concluded.
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Effect of Full-Chord Porosity on Aerodynamic Characteristics of the
NACA 0012 Airfoil WU 505-59-10-30

Raymond E. Mineck and Peter M. Hartwich

L-17492

NASA TP-3591

Mineck: Langley Research Center, Hampton, VA; Hartwich: ViGYAN Inc., Hampton, VA.

A test was conducted on a model of the NACA 0012 airfoil section with a solid upper surface or a porous upper
surface with a cavity beneath for passive venting. The purposes of the test were to investigate the aerodynamic
characteristics of an airfoil with full-chord porosity and to assess the ability of porosity to provide a multipoint or
self-adaptive design. The tests were conducted in the Langley 8-Foot Transonic Pressure Tunnel over a Mach num-
ber range from 0.50 to 0.82 at chord Reynolds numbers of 2× 106, 4 × 106, and 6× 106. The angle of attack was
varied from−1° to 6°. At the lower Mach numbers, porosity leads to a dependence of the drag on the normal force.
At subcritical conditions, porosity tends to flatten the pressure distribution, which reduces the suction peak near the
leading edge and increases the suction over the middle of the chord. At supercritical conditions, the compression
region on the porous upper surface is spread over a longer portion of the chord. In all cases, the pressure coefficient
in the cavity beneath the porous surface is fairly constant with a very small increase over the rear portion. For the
porous upper surface, the trailing edge pressure coefficients exhibit a creep at the lower section normal force coef-
ficients, which suggests that the boundary layer on the rear portion of the airfoil is significantly thickening with
increasing normal force coefficient.
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